不同玉米品种对镉的富集特征研究

宋 晟

正安县农业农村局,贵州 遵义 563400

摘要:通过室外盆栽试验,探讨玉米吸收镉(Cd)和土壤镉形态之间的关系。以 10 个玉米品种为研究对 象,在全镉质量分数为 2.735 mg/kg 的土壤中培养玉米,测定玉米干质量、镉含量,采用方差分析和主成分 分析法研究不同玉米品种对于镉元素累积呈现出显著。结果表明了玉米的根、茎、叶等转运镉的能力存在一 定差异P < 0.05。结论铜玉3号玉米对镉的富集和转运能力较强,属于镉高累积玉米品种,在镉污染土壤上 种植玉米的优选品种。

关键词:玉米;富集;镉形态;试验

中图分类号:S513

DOI: 10.3969/j.issn.2097-065X.2024.02.027

1 试验目的

针对镉(Cd)中轻度污染旱地,在常规耕作条件 下,以正安县主裁玉米品种为对象,研究不同玉米品 种对镉的富集特征,筛选出适宜在正安县种植的镉 低累积玉米品种。

2 试验实施

2.1 试验地点

试验地块海拔高度 1 060~1 080 m 之间,常年

平均温度 16℃左右,且满足交通便利、易于展示、农户 配合意识较强、土壤耕层深厚疏松、肥力均一等条件。

基础土样采集:在试验地块采用梅花形布点法, 采集土壤样品 4 个,样品量 1 kg 左右(折合为风干 重),将土壤风干后装入有详细标识标签的塑料袋中 保存,测定土壤镉、汞、砷、铅、铬、镉、pH 值,经检测 结果分析, 镉平均含量为 2.735 mg/kg, pH 为 7.56,详见表 1。按《轻中度污染耕地安全利用与治 理修复推荐技术名录》(2019年版)要求,对此地块 开展玉米品种筛选试验[1]。

表 1	玉米品种筛选试验 前期米样	
F	壬县八粉 //1\	

送样编号		II 店	综合				
运件编 与	As	Cd	Cr	Hg	Pb	pH 值	
LD003	14.5	2.85	129	0.211	32.6	7.56	2
LD003-1		2.86				7.56	2
LD003-2		2.64				7.56	2
LD003-3		2.59				7.56	2

2.2 供试玉米品种

选择适宜正安县种植的玉米品种 10 个,品种名 称详见表 2。

表 2 玉米品种筛选供试品种名称

序号	品种名称	自编号	供应商
1	贵农玉 898	YM01	
2	金福玉 66	YM02	
3	先玉 1171	YM03	
4	雅玉 988	YM04	
5	裕单 171	YM05	本地采购
6	金福玉 808	YM06	平地禾與
7	北玉 1521	YM07	
8	大爱 11	YM08	
9	铜玉 3 号	YM09	
10	五谷 8220	YM10	

2.3 试验设计

本次试验每个玉米品种作为1个处理,计10个 处理,每个处理设置3个重复,共30个试验小区。

2.4 试验小区划定

首先,小区划分前整地;为保证拟建立小区试验 的地块土壤重金属含量、肥力水平等条件基本均一, 在试验开始前采用旋耕机多次(2~3次)旋耕的方 式,尽可能消除试验地块内部土壤条件的差异,并尽 可能保证地面平整[2]。

其次,划定试验区域;先在地间一角定桩定点, 通过拉绳方式确定第1条直线边界,应用"勾股定 理"划出直角后确定第2、3、4条边界,确保试验区域 方正,并在周边区域留足保护行(50 cm),保护行与 试验区域之间空1~2行(列)。

最后,小区数量及布置;根据试验处理数量,设 置 3 次重复,确定试验小区数量,即共 30 个小区,综 合考虑划定的试验区域面积和形状,尽可能采取长方形小区形状,小区面积 9 m²(2 m×4.5 m),以一个重复为一个区组,区组内部各处理(品种)随机排列。每小区栽 3 行,每行 6 窝,留双株。为保证试验的安全和精确性,在试验田周围种植多行保护行^[3]。

3 玉米种植及管理

玉米品种筛选试验实施时间于 2021 年 3 月至 2021 年 9 月。

3.1 移栽及底肥施用

4月17开始移栽,同一时间施基肥:每亩施复合肥40 kg+生物有机肥150 kg,控制人为误差,移栽密度8500窝,每小区栽9行、17窝,共153株。

3.2 查看玉米生长情况

5月8日查看试验区玉米生长情况、是否达到 追肥时间。

3.3 追肥

5月25日、6月20日、7月13日3次追肥:复合肥(40 kg/亩)+尿素(15 kg/亩)施用于相应小区。

3.4 病虫害防治

6月18日农业局带队观察有无病虫害、观察玉 米长势、对受到病虫害的农作物及时上措施。

3.5 人工除草

6月22日组织农户进行除草。

4 样品采集

水稻成熟时,小区内随机采取 5 个点,5 点水稻混合后装网袋,确保每袋稻谷干重量 500 g 左右,共计玉米样品 30 个,检测水稻镉、汞、砷、铅、铬、硒、锗7 个指标等。

所有检测机构须保藏所有送检的水稻样品、土 壤样品,直至项目结束。

采样、流转、检测过程及规范详见布点方案,这

里不做详细阐述,本小区试验采样为农产品土样协同采样,且每个试验小区(包括空白对照小区)分别采集水稻样1个,共计采集水稻样30个[4]。

5 试验结果分析

5.1 成本分析

结合玉米种子购买单价和亩用量分析,玉米品种筛选实施成本最低有3种(贵农玉898、铜玉3号、裕单171),都为52.5元/亩;最高的1种(五谷8220),为90元/亩。

实际成本排名:(贵农玉 898、铜玉 3 号、裕单 171) <(北玉 1521、大爱 11、金福玉 66、金福玉 808) <雅玉 988 < 先玉 1171 < 五谷 8220,详见表 3。

表 3 玉米品种筛选成本分析

种植品种	单价 (元/kg)	亩用量 (kg)	投入品成本 (元/亩)	成本排名				
五谷 8220	60	1.5	90	1				
先玉 1171	55	1.5	82. 5	2				
雅玉 988	50	1.5	75	3				
北玉 1521	40	1.5	60	4				
大爱 11	40	1.5	60	4				
金福玉 66	40	1.5	60	4				
金福玉 808	40	1.5	60	4				
贵农玉 898	35	1.5	52. 5	5				
铜玉 3 号	35	1.5	52. 5	5				
裕单 171	35	1.5	52. 5	5				

5.2 产量分析

玉米品种筛选小区试验共计选择品种 10 种, 亩产量最高的品种为五谷 8220,为 615.35 kg;亩 产量最低的为铜玉 3 号,为 411.05 kg;亩产量最 高值较最低值相差 204.3 kg;亩产量平均值为 512.187 kg,详细产量排名见表 4。

表 4 玉米品种筛选小区试验产量分析表

处理名	出田鲜果穗重(kg)	水分速测仪测定含水率(%)	折亩产(kg)	产量排名
五谷 8220	36.45	26.90	615.35	1
大爱 11	37.74	26.80	602.45	2
金福玉 808	34.8	27.10	542.73	3
裕单 171	33.75	26.90	527.58	4
先玉 1171	34.5	27.10	522.69	5
贵农玉 898	32.91	26.90	499.76	6
北玉 1521	29. 28	27.30	479.68	7
金福玉 66	29.07	26.70	464.58	8
雅玉 988	29.91	27.10	456	9
铜玉 3 号	26.64	26.70	411.05	10

5.3 降镉效果

在 30 个实施玉米品种筛选措施点位中,玉米籽 粒中 Cd 含量在 0.013~0.55 mg/kg 之间,品种筛 选措施玉米中 Cd 含量正态分布见图 1。

玉米小区试验品种筛选共计选择品种 10 种,分别为北玉 1521、大爱 11、贵农玉 898、金福玉 66、金福玉 808、铜玉 3 号、五谷 8220、先玉 1171、雅玉 988、裕单 171,超标的只有铜玉 3 号三个重复 Cd 均超标^[5],其他地块重金属含量均未超标,三个重复镉含量最低值品种为贵农玉 898,详见表 5。

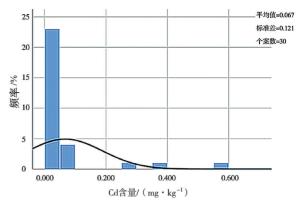


图 1 品种筛选玉米中镉(Cd)含量正态分布图

表 5 品种筛选不同品种玉米检测数据分析表

mg/kg

				ᅺᄺᆒᄰᅺᄭᄓᆸ					mg/ Kg
对应措施	重复	镉	汞	砷	铅	铬	硒	锗	综合
北玉 1521	I	0.05	ND	0.006	ND	ND	0.04	ND	1
北玉 1521	Ш	0.058	ND	0.002	ND	ND	0.02	ND	1
北玉 1521	II	0.034	ND	0.002	ND	ND	0.01	ND	1
平均值	直	0.047	ND	0.003	ND	ND	0.023	ND	
大爱 11	I	0.046	ND	0.003	ND	ND	0.04	ND	1
大爱 11	Ш	0.034	ND	0.001	ND	ND	0.02	ND	1
大爱 11	II	0.043	ND	0.001	ND	ND	0.02	ND	1
平均值	Ī	0.041	ND	0.002	ND	ND	0.027	ND	
贵农玉 898	I	0.014	ND	0.002	ND	ND	0.03	ND	1
贵农玉 898	Ш	0.014	ND	0.001	ND	ND	0.02	ND	1
贵农玉 898	II	0.02	ND	0.002	ND	ND	0.02	ND	1
平均值	Ī	0.016	ND	0.002	ND	ND	0.023	ND	
金福玉 66	I	0.018	ND	0.005	ND	ND	0.04	ND	1
金福玉 66	Ш	0.019	ND	0.002	ND	ND	0.03	ND	1
金福玉 66	II	0.017	ND	0.003	ND	ND	0.02	ND	1
平均值	直	0.018	ND	0.003	ND	ND	0.030	ND	
金福玉 808	I	0.022	ND	0.003	ND	ND	0.02	ND	1
金福玉 808	Ш	0.013	ND	0.002	ND	ND	0.03	ND	1
金福玉 808	II	0.018	ND	0.002	ND	ND	0.02	ND	1
平均值		0.018	ND	0.002	ND	ND	0.023	ND	
铜玉3号	I	0.55	ND	0.005	ND	ND	0.04	ND	3
铜玉3号	Ш	0.28	ND	0.002	ND	ND	0.02	ND	3
铜玉3号	II	0.388	ND	0.002	ND	ND	0.01	ND	3
平均值	直	0.406	ND	0.003	ND	ND	0.023	ND	
五谷 8220	I	0.042	ND	0.002	ND	ND	0.07	ND	1
五谷 8220	Ш	0.022	ND	ND	ND	ND	0.02	ND	1
五谷 8220	II	0.035	ND	0.002	ND	ND	0.01	ND	1
平均值	<u></u>	0.033	ND	0.002	ND	ND	0.033	ND	
先玉 1171	I	0.023	ND	0.004	ND	ND	0.03	ND	1
先玉 1171	Ш	0.024	ND	0.003	ND	ND	ND	ND	1
先玉 1171	II	0.063	ND	0.002	ND	ND	0.02	ND	1
平均值	直	0.037	ND	0.003	ND	ND	0.025	ND	
雅玉 988	Ι	0.023	ND	0.005	ND	ND	0.06	ND	1
雅玉 988	Ш	0.019	ND	0.004	ND	ND	0.01	ND	1
雅玉 988	II	0.014	ND	0.002	ND	ND	0.02	ND	1
平均值	<u>i</u>	0.019	ND	0.004	ND	ND	0.030	ND	
裕单 171	Ι	0.015	ND	0.002	ND	ND	0.03	ND	1
裕单 171	Ш	0.013	ND	0.002	ND	ND	0.02	ND	1
裕单 171	II	0.081	ND	0.001	ND	ND	0.01	ND	1
平均值	<u> </u>	0.036	ND	0.002	ND	ND	0.020	ND	

注:ND表示检测结果低于方法最低检出限(未检出)。

5.4 方差分析

利用方差分析,从表 6 可以看出:不同玉米品种对于镉元素累积呈现出显著性(*P*<0.05),具体分

析可知:不同玉米品种对于镉元素累积呈现出 0.01 水平显著性(F=20.606, P=0)。

分析项	项	样本量	平均值	标准差	F	P
	五谷 8220	3	0.03	0.01		O * *
	先玉 1171	3	0.04	0.02		
	北玉 1521	3	0.05	0.01		
	大爱 11	3	0.04	0.01	20.606	
	裕单 171	3	0.04	0.04		
镉(mg/kg)	贵农玉 898	3	0.02	0		
	金福玉 66	3	0.02	0		
	金福玉 808	3	0.02	0		
	铜玉3号	3	0.41	0.14		
	雅玉 988	3	0.02	0		
	总计	30	0.07	0.12		

表 6 玉米品种筛选小区试验方差分析

根据平均值判断结果为:铜玉 3 号>北玉 1521 >大爱 11>先玉 1171>裕单 171>五谷 8220>雅 玉 988>金福玉 808=金福玉 66>贵农玉 898,详见图 2。

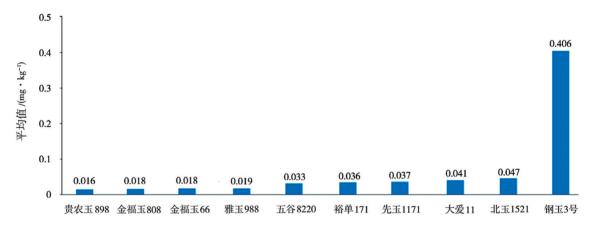


图 2 不同玉米品种对镉(Cd)元素积累的影响

5.5 综合分析

从镉含量分析来看,北玉 1521、大爱 11、贵农玉 898、金福玉 66、金福玉 808、铜玉 3 号、五谷 8220、先 玉 1171、雅玉 988、裕单 171 都是低镉吸收作物,铜 玉 3 号为高镉吸收作物 [6]。

参考文献:

- [1] 秦榕璘,李元,祖艳群,等.不同基因型玉米品种对 Pb 的富集特征[J].农业资源与环境学报,2016,33(3): 268-275.
- [2] 董欣欣. 不同玉米品种对土壤重金属镉积累富集特性研究[J]. 中国农业文摘一农业工程,2022,34(4): 22-26.
- [3] 邓婷,卢维盛,吴家龙,等.不同玉米品种对土壤镉富集

和转运的差异研究[J]. 华南农业大学学报,2019,40 (4):33-39.

- [4] 肖亚涛,王德哲,李世欣,等.不同 Cd 质量分数处理下两玉米品种植株 Cd 分布、富集和转运特性[J].灌溉排水学报,2023,42(6):45-52.
- [5] 樊玉,庄重,赵丽洁,等.不同玉米品种苗期对镉及营养元素的吸收转运特性[J].农业环境科学学报,2023,42 (4):744-753.
- [6] 张宁,陶荣浩,张慧敏,等.不同玉米品种对镉积累和转运差异研究[J]. 农业资源与环境学报,2022,39(6): 1208-1216.

^{*} *P*<0.05, * * *P*<0.01.